993 resultados para Single Nucleotide


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Staphylococcus aureus is a common pathogen that causes a variety of infections including soft tissue infections, impetigo, septicemia toxic shock and scalded skin syndrome. Traditionally, Methicillin-Resistant Staphylococcus aureus (MRSA) was considered a Hospital-Acquired (HA) infection. It is now recognised that the frequency of infections with MRSA is increasing in the community, and that these infections are not originating from hospital environments. A 2007 report by the Centers for Disease Control and Prevention (CDC) stated that Staphylococcus aureus is the most important cause of serious and fatal infections in the USA. Community-Acquired MRSA (CA-MRSA) are genetically diverse and distinct, meaning they are able to be identified and tracked by way of genotyping. Genotyping of MRSA using Single nucleotide polymorphisms (SNPs) is a rapid and robust method for monitoring MRSA, specifically ST93 (Queensland Clone) dissemination in the community. It has been shown that a large proportion of CA-MRSA infections in Queensland and New South Wales are caused by ST93. The rationale for this project was that SNP analysis of MLST genes is a rapid and cost-effective method for genotyping and monitoring MRSA dissemination in the community. In this study, 16 different sequence types (ST) were identified with 41% of isolates identified as ST93 making it the predominate clone. Males and Females were infected equally with an average patient age of 45yrs. Phenotypically, all of the ST93 had an identical antimicrobial resistance pattern. They were resistant to the β-lactams – Penicillin, Flu(di)cloxacillin and Cephalothin but sensitive to all other antibiotics tested. Virulence factors play an important role in allowing S. aureus to cause disease by way of colonising, replication and damage to the host. One virulence factor of particular interest is the toxin Panton-Valentine leukocidin (PVL), which is composed of two separate proteins encoded by two adjacent genes. PVL positive CA-MRSA are shown to cause recurrent, chronic or severe skin and soft tissue infections. As a result, it is important that PVL positive CA-MRSA is genotyped and tracked. Especially now that CA-MRSA infections are more prevalent than HA-MRSA infections and are now deemed endemic in Australia. 98% of all isolates in this study tested positive for the PVL toxin gene. This study showed that PVL is present in many different community based ST, not just ST93, which were all PVL positive. With this toxin becoming entrenched in CA-MRSA, genotyping would provide more accurate data and a way of tracking the dissemination. PVL gene can be sub-typed using an allele-specific Real-Time PCR (RT-PCR) followed by High resolution meltanalysis. This allows the identification of PVL subtypes within the CA-MRSA population and allow the tracking of these clones in the community.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A SNP genotyping method was developed for E. faecalis and E. faecium using the 'Minimum SNPs' program. SNP sets were interrogated using allele-specific real-time PCR. SNP-typing sub-divided clonal complexes 2 and 9 of E. faecalis and 17 of E. faecium, members of which cause the majority of nosocomial infections globally.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In total, 782 Escherichia coli strains originating from various host sources have been analyzed in this study by using a highly discriminatory single-nucleotide polymorphism (SNP) approach. A set of eight SNPs, with a discrimination value (Simpson's index of diversity [D]) of 0.96, was determined using the Minimum SNPs software, based on sequences of housekeeping genes from the E. coli multilocus sequence typing (MLST) database. Allele-specific real-time PCR was used to screen 114 E. coli isolates from various fecal sources in Southeast Queensland (SEQ). The combined analysis of both the MLST database and SEQ E. coli isolates using eight high-D SNPs resolved the isolates into 74 SNP profiles. The data obtained suggest that SNP typing is a promising approach for the discrimination of host-specific groups and allows for the identification of human-specific E. coli in environmental samples. However, a more diverse E. coli collection is required to determine animal- and environment-specific E. coli SNP profiles due to the abundance of human E. coli strains (56%) in the MLST database.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The World Health Organization recommends that the majority of water monitoring laboratories in the world should test for E. coli daily since thermotolerant coliforms and E. coli are key indicators for risk assessment of recreational waters. Recently, we developed a new SNP method for typing E. coli strains, by which human-specific genotypes were identified. Here, we report the presence of these previously described specific SNP profiles in environmental water, sourced from the Coomera River, located on South East Queensland, Australia, over a period of two years. This study tested for the presence of human-specific E. coli to ascertain whether hydrologic and anthropogenic activity plays a key role in the pollution of the investigated watershed or whether the pollution is from other sources. We found six human-specific SNP profiles and one animal-specific SNP profile consistently across sampling sites and times. We have demonstrated that our SNP genotyping method is able to rapidly identify and characterise human- and animal-specific E. coli isolates in water sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

KLK15 over-expression is reported to be a significant predictor of reduced progression-free survival and overall survival in ovarian cancer. Our aim was to analyse the KLK15 gene for putative functional single nucleotide polymorphisms (SNPs) and assess the association of these and KLK15 HapMap tag SNPs with ovarian cancer survival. Results In silico analysis was performed to identify KLK15 regulatory elements and to classify potentially functional SNPs in these regions. After SNP validation and identification by DNA sequencing of ovarian cancer cell lines and aggressive ovarian cancer patients, 9 SNPs were shortlisted and genotyped using the Sequenom iPLEX Mass Array platform in a cohort of Australian ovarian cancer patients (N = 319). In the Australian dataset we observed significantly worse survival for the KLK15 rs266851 SNP in a dominant model (Hazard Ratio (HR) 1.42, 95% CI 1.02-1.96). This association was observed in the same direction in two independent datasets, with a combined HR for the three studies of 1.16 (1.00-1.34). This SNP lies 15bp downstream of a novel exon and is predicted to be involved in mRNA splicing. The mutant allele is also predicted to abrogate an HSF-2 binding site. Conclusions We provide evidence of association for the SNP rs266851 with ovarian cancer survival. Our results provide the impetus for downstream functional assays and additional independent validation studies to assess the role of KLK15 regulatory SNPs and KLK15 isoforms with alternative intracellular functional roles in ovarian cancer survival.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Dopamine D2 receptor (DRD2) is thought to be critical in regulating the dopaminergic pathway in the brain which is known to be important in the aetiology of schizophrenia. It is therefore not surprising that most antipsychotic medication acts on the Dopamine D2 receptor. DRD2 is widely expressed in brain, levels are reduced in brains of schizophrenia patients and DRD2 polymorphisms have been associated with reduced brain expression. We have previously identified a genetic variant in DRD2, rs6277 to be strongly implicated in schizophrenia susceptibility. Methods: To identity new associations in the DRD2 gene with disease status and clinical severity, we genotyped seven single nucleotide polymorphisms (SNPs) in DRD2 using a multiplex mass spectrometry method. SNPs were chosen using a haplotype block-based gene-tagging approach so the entire DRD2 gene was represented. Results: One polymorphism rs2734839 was found to be significantly associated with schizophrenia as well as late onset age. Individuals carrying the genetic variation were more than twice as likely to have schizophrenia compared to controls. Conclusions: Our results suggest that DRD2 genetic variation is a good indicator for schizophrenia risk and may also be used as a predictor age of onset.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the mammary gland, Wnt signals are strongly implicated in initial development of the mammary rudiments and in the ductal branching and alveolar morphogenesis that occurs during pregnancy. Previously, we identified two Wnt signaling pathway-implicated genes, PPP3CA and MARK4, as having a role in more aggressive and potentially metastatic breast tumors. In this study, we examined two SNPs within PPP3CA and MARK4 in an Australian case-control study population for a potential role in human breast cancers. 182 cases and 180 controls were successfully genotyped for the PPP3CA SNP (rs2850328) and 182 cases and 177 controls were successfully genotyped for the MARK4 SNP (rs2395) using High Resolution Melt (HRM) analysis. Genotypes of randomly selected samples for both SNPs were validated by dye terminator sequencing. Chi-square tests were performed to determine any significant differences in the genotype and allele frequencies between the cases and controls. Chi-square analysis showed no statistically significant difference (p > .05) for genotype frequencies between cases and controls for rs2850328 (χ2 = 1.2, p = .5476) or rs2395 (χ2 = .3, p = .8608). Similarly, no statistical difference was observed for allele frequencies for rs2850328 (χ2 = .68, p = .4108) or rs2395 (χ2 = .02, p = .893). Even though an association of the polymorphisms rs2850328 and rs2395 and breast cancer was not detected in our case-control study population, other variants within the PPP3CA and MARK4 genes may still be associated with breast cancer, as both genes are implicated with processes involved in the disease as well as their mutual partaking in the Wnt signaling pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

microRNAs are small, non-coding RNAs that influence gene expression on a post-transcriptional level. They participate in diverse biological pathways and may act as either tumor suppressor genes or oncogenes. As they may have an effect on thousands of target mRNAs, single-nucleotide polymorphisms in microRNA genes might have major functional consequences, because the microRNA's properties and/or maturation may change. miR-196a has been reported to be aberrantly expressed in breast cancer tissue. Additionally, the SNP rs11614913 in hsa-mir-196a-2 has been found to be associated with breast cancer risk in some studies although not in others. This study evaluated the association between rs11614913 and breast cancer risk in a Caucasian case-control cohort in Queensland, Australia. Results do not support an association of the tested hsa-mir-196a-2 polymorphism with breast cancer susceptibility in this cohort. As there is a discrepancy between our results and previous findings, it is important to assess the role of rs11614913 in breast cancer by further larger studies investigating different ethnic groups.